A Non-local Method for Robust Noisy Image Completion

نویسندگان

  • Wei Li
  • Lei Zhao
  • Duanqing Xu
  • Dongming Lu
چکیده

The problem of noisy image completion refers to recovering an image from a random subset of its noisy intensities. In this paper, we propose a non-local patch-based algorithm to settle the noisy image completion problem following the methodology “grouping and collaboratively filtering”. The target of “grouping” is to form patch matrices by matching and stacking similar image patches. And the “collaboratively filtering” is achieved by transforming the tasks of simultaneously estimating missing values and removing noises for the stacked patch matrices into low-rank matrix completion problems, which can be efficiently solved by minimizing the nuclear norm of the matrix with linear constraints. The final output is produced by synthesizing all the restored patches. To improve the robustness of our algorithm, we employ an efficient and accurate patch matching method with adaptations including pre-completion and outliers removal, etc. Experiments demonstrate that our approach achieves state-of-the-art performance for the noisy image completion problem in terms of both PSNR and subjective visual quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noisy images edge detection: Ant colony optimization algorithm

The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy ima...

متن کامل

Comparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems

Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...

متن کامل

Image authentication using LBP-based perceptual image hashing

Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Robust sound event classification using LBP-HOG based bag-of-audio-words feature representation

This paper addresses the problem of sound event classification, focusing on feature extraction methods which are robust in noisy environments. In real world, sound events can be easily exposed in a noisy situation causing corruption of distinctive temporal and spectral characteristics. Therefore, extracting robust features to represent these characteristics is important in achieving good classi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014